DESIGN SOLUTIONS FOR THE SOUTH TRI-STATE TOLL HIGHWAY (M.P. 0 TO M.P. 3.6)

AUGUST 13-16, 2006

SPONSORED BY TRB COMMITTEES – ADA70, AFB10, AHB65

David R. McDonald, Jr., P.E., Ph.D., PTOE.

Acknowledgements

- Illinois Tollway Board, Chairman, Executive Director, and the Chief Engineer
- Illinois Tollway Project Managers
 - Subhas Bose
 - Ron Quinsey
- Hanson Project Manager John Nelson
- Contributing Authors
 - Rich Hoffman
 - Amber Petkevicius

Presentation Overview

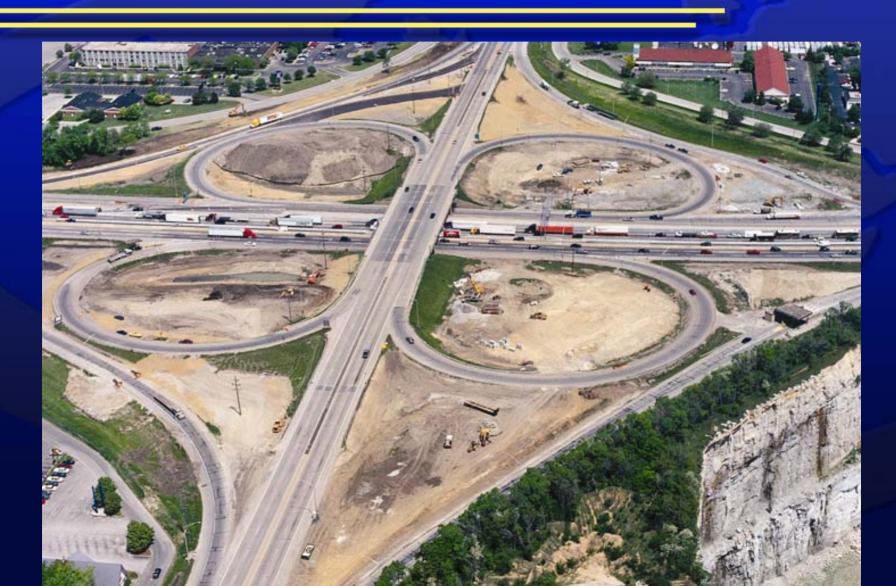
- History
- Description
- Constraints
- Project Challenges and Solutions
- Summary

Project History

- Contracts Awarded July 2001 to rehabilitate the pavement and bridges, much constructed in 1950s
- 3.6 miles with 2 interchanges and part of a 3rd
- Scope changed June 2002 Reconstruction
- Construction cost estimated at \$150,000,000
- Up to 50 concurrent internal staff in five offices + subconsultants

Project Description

- Just south of Chicago near Indiana state line
- Main route between Michigan and Wisconsin through Illinois
- Section included 8 mainline bridges and 5 over crossing bridges (plus the Oasis)
- 6 lane section to 8 and 10 lane sections
- 3 existing and 2 proposed toll plazas


Interchanges – Portion of I-294/I-80/IL394

Interchanges – Lincoln Oasis Ramps

Interchanges – Halsted Interchange

Special Project Constraints

- Maintain traffic during construction
- Concept report contracts
- Schedule and budget
- · Right of way, rock, and soil
- Overhead structures to remain due to schedule and budgetary constraints
 - Decision to provide maximum benefit to the public for the available budget

Maintain Traffic

- Minimum of 3 lanes open in each direction during construction
- 15 minute road closures for beam placement and rock blasting
- Coordination with adjacent IDOT and INDOT improvements

Concept Report Contracts

- Various firms prepared discipline specific concepts
- Overall Design Concept overlapped individual concepts
- Explored issues made by discipline specific concepts and adapted as the design developed.

Schedule and Budget

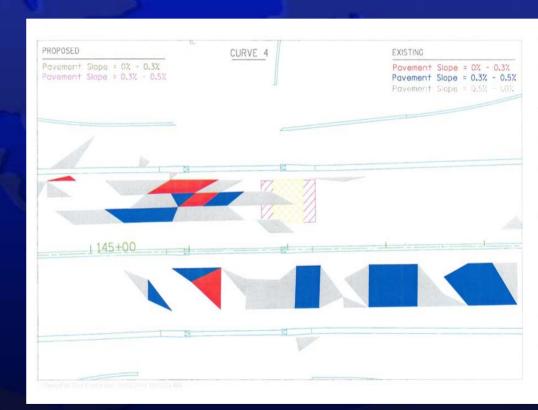
- Bidding by end of 2004
- Construction complete by Fall 2006
- Construction budget
- Design budget

Right of Way, Rock, and Soil

- Urban area
- Quarry
- Forest preserve
- Poor soil at east end of project

Overhead Structures to Remain

- 2 Railroads
- 1 Oasis
- 3 Roadways
- Meet current vertical clearance criteria


Project Challenges and Solutions

- Mainline Profile Design and Superelevation
- Design Speed Profiles
- Maintenance of Traffic Design
- Revision of Tollway Criteria and Standard Drawings
- Barriers and Warrants
- Soils (required special design considerations)
- Design Exceptions
- Special Design and Environment

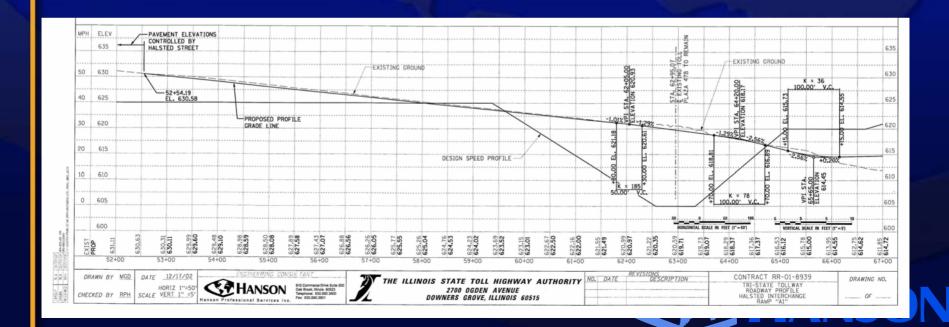
Mainline Profile and Superelevation

- Provide clearance under structures
- Footing impacts
- Provide drainage
- Consider superelevation transitions

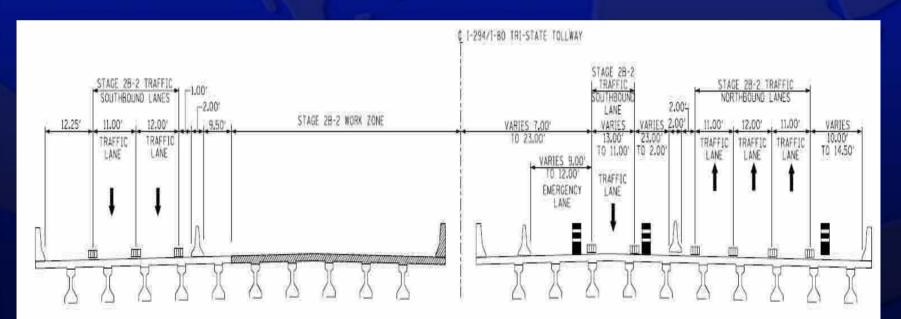
Design Speed Profiles

- Needed at speed adjustment locations
 - Ramps and ramp terminals
 - CDs
 - Toll Plazas
- Based on AASHTO acceleration and deceleration rates

BY MGD DATE 11/4/2003 RVSD 17/26/2004 TO DATE 17/28/2004 TO DATE 17/28/2004 TO DATE 17/28/2004 TO DATE DATE TO DATE DATE TO DATE T	


EXAMPLE RAMP DECELERATION CALCULATIONS

H		Cumulative		Sne	eed	
	Profile grade	Distance s	Station	V (ft/s)	V (mph)	(1) Deceleration Length from 45 mph to 20 mph from AASHTO Ex. 10-73
		-	799+00	66.0	45.0	(2) Calculate deceleration rate used by AASHTO
		0	799+15	66.0	45.0	$V^2=V_o^2+2*a*(s-s_o)$ (from FE Handbook)
		5	799+20	65.6	44.7	V = Design Speed = 20mph (29.3 ft/s)
		10	799+25	65.2	44.4	V _o = Init.Design Speed = 45mph (66 ft/s)
		20	799+35	64.3	43.9	a = rate of deceleration
		30	799+45	63.5	43.3	Solving for a yields,
		40	799+55	62.7	42.7	$a = \frac{1}{2} * (V^2 - V_o^2)/(s - s_o))$
		50	799+65	61.8	42.1	$a = \frac{1}{2} * (29.3^2 - 66^2)/(325 - 0) = -5.38$ ft/s/s
		60	799+75	60.9	41.5	(3) Design Speed must be less than or equal to:
		70	799+85	60.0	40.9	40mph at curve #1 PC Sta. 800+00.00
		80	799+95	59.1	40.3	25mph at curve #2 PCC Sta. 801+95.00
		90	800+05	58.2	39.7	20mph at curve #3 PCC Sta. 803+25.00
		100	800+15	57.3	39.0	(4) Set up table using above criteria and deceleration rate to establish point at which deceleration begins. From
		110	800+25	56.3	38.4	above equation solving for V yields, $V = \sqrt{\left[V_o^2 + 2*a*(s-s_o)\right]}$
		120	800+35	55.4	37.7	
	%	130	800+45	54.4	37.1	
	3	140	800+55	53.4	36.4	(5) 25 mph control point (Sta. 801+95) will determine
	Ĕ(150	800+65	52.4	35.7	where deceleration begins. (6) 25 mph control point (Sta. 801+95) is before Sta. 803+00, therefore no adjustment is required for the
	ΥAΓ	160	800+75	51.3	35.0	
	9	170	800+85	50.3	34.3	upgrade present after Sta. 803+25.
	=LAT GRADE (<2%)	180	800+95	49.2	33.5	(7) Using the deceleration rate of 5.38 ft/s/s means that
	Œ	190 200	801+05	48.1 46.9	32.8 32.0	(7) Osing the deceleration rate of 5.38 its/s means that {29.3 ² =36.67 ² +2*(-5.38*S)} 45.2' ft is required to
		200	801+15 801+25	46.9 45.8	32.0 31.2	decelerate from 25 to 20mph.
		220	801+35	45.6	30.4	From Speed Control Point at Sta. 801+95
		230	801+35	44.6	29.6	Begin deceleration at Sta. 799+15.20
		240	801+55	42.1	28.7	End deceleration at Sta. 802+40.20
		250	801+65	40.8	27.8	
		260	801+75	39.5	26.9	
		270	801+85	38.1	26.0	
		280	801+95	36.6	25.0	
		290	802+05	35.1	24.0	
		300	802+15	33.6	22.9	
		310	802+25	31.9	21.8	
		320	802+35	30.2	20.6	
		330	802+45	29.3	20.0	
		340	802+55	29.3	20.0	
		350	802+65	29.3	20.0	


Design Speed Profiles

- Horizontal geometrics
- Vertical geometrics

Maintenance of Traffic Design

- Speed selection and superelevation
- Number of lanes
 - Mainline crossovers
 - Counter flow lanes

STAGE 2B-2 WORK ZONE AND TRAFFIC THORN CREEK STA 30+47.87 TO STA 33+27.20

Maintenance of Traffic Design

- Temporary signals
- Blasting
- Earthwork calculations

Year 1

Year 2

Revision of Tollway Criteria and Standard Drawings

- AASHTO 2001 "Green Book"
- AASHTO 2002 "Roadway Design Guide" (Roadside Safety Analysis Program)
- Tollway Standard Drawings under revision from 2001 to 2004
 - Understood client's goal to incorporate
 - Identified critical standard drawings

Barriers and Warrants

- Utilized new software for Level 3 barrier warrants (RSAP)
 - 1st consultant to use for client
 - Contacted development team
- Interesting analyses:
 - Presence of rock
 - Sign pedestal
 - Tapered rock cut
 - Kick out for a sign support
 - Cloverleaf opposing traffic and barrier options

Design Exceptions

- Tollway has their own forms and process
- Identified up to 60 potential design deviations
 - Many eliminated
 - Modified design
 - Met other's accepted criteria / policy
 - Design speed & decision sight distance

Special Design and Environment- Toll Collection

- 3 plazas became 2 plazas (eliminated construction and future maintenance costs)
- Improved operations by eliminating a stop point

Special Design and Environment

- Environment (CSS)
 - Council of Indian tribe coordination
 - Foundation design to permit groundwater flow
 - Animal passage
 - Limit forest preserve ROW and impacts to threatened orchid
 - Coordinated and considered a bicycle path and park
 - Aesthetic treatment of walls
- Performance Specifications
 - Some design moved to contractor
 - Expedited project delivery
 - Favorable material pricing

Summary

- Consider design element interrelationships
- Develop knowledge of new design publications
- Communicate with client
- Utilize innovative design techniques
- Performance specifications to expedite design process and provide material flexibility
- Successful bid of \$136 million
- Applicable to other projects

Questions / Contact Information

David R. McDonald, Jr., P.E., Ph.D., PTOE

Hanson Professional Services Inc.

815 Commerce Drive, Suite 200

Oak Brook, IL 60523

(630) 990-3800 x 245

dmcdonald@hanson-inc.com

