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ABSTRACT 

Estimation of fuel consumption and pollutant emissions for evaluating road traffic conditions is useful for 

environmental assessment in traffic design, operations and planning. This also forms the basis of 
operating cost modeling.  Fuel consumption and emission (CO2, CO, HC, NOx) models with four levels 

of aggregation for traffic engineering and transport planning purposes were developed by the first author 

and his colleagues at the Australian Road Research Board in the 1980s.  These models are based on 
vehicle power requirements, and the four-mode elemental (modal) and the more detailed instantaneous 

forms of the model are implemented in the SIDRA INTERSECTION and SIDRA TRIP software 

packages.   

This paper describes the recent work on recalibration of light and heavy vehicle parameters used by this 
model using a large empirical database for a modern vehicle fleet.  Implications of the change in fuel and 

emission model parameters on intersection assessment are considered.  A roundabout evaluation case is 

presented assessing the effectiveness of roundabout metering signals using the fuel consumption and 
emission models with (i) older vehicle parameter values and (ii) the recalibrated parameter values to 

investigate whether the changes in vehicle parameters change the results significantly.  The model 

provided in the SIDRA INTERSECTION software package is used for this purpose.   

 

INTRODUCTION 

Environmental assessment in traffic design, operations and planning can be conducted using models to 
estimate fuel consumption and pollutant emissions as a function of traffic conditions. This also forms the 

basis of operating cost modeling.   

Fuel consumption and emission (CO2, CO, HC, NOx) models with four levels of aggregation for traffic 
engineering and transport planning purposes were developed by the first author and his colleagues based 

on extensive research at the Australian Road Research Board in the 1980s (1-19).  These models are 

based on vehicle power requirements, and the four-mode elemental (modal) and the more detailed 

instantaneous forms of the model are implemented in the SIDRA INTERSECTION and SIDRA TRIP 
software packages (20-23).   

Studies of fuel consumption and emission using SIDRA software were reported in the past (24, 26).   

In more recent years, an application of the model to investigate of fuel consumption, pollutant emission 
and operating cost savings at a roundabout with metering signals was reported by the first author (27).  

This model provides highly accurate fuel consumption estimates for traffic analysis since there is no 

simplification of traffic information into such aggregate variables as average travel speed, average 

running speed and number of stops.  However, it has been recognized that it is necessary to update the 
vehicle parameters used by the model, especially for emission estimates, in order to reflect more recent 

changes in vehicle characteristics (rated engine power, catalyst loading and composition, engine 

management system, etc.) and fleet composition (28).   

Research was undertaken recently to calibrate the light and heavy vehicle parameters used by the fuel 

consumption and emission models in SIDRA INTERSECTION and SIDRA TRIP based on a large 

empirical database for a modern vehicle fleet.  The preliminary results of this effort were reported by the 
authors previously (29).   

The research involved the use of an empirical database (NISE 2) incorporating a large range of fuel 

consumption and emission data for about 400 vehicles representing a cross section of typical vehicles on 

Australian metropolitan roads (30-32).  Data were collected in a vehicle emissions test laboratory using a 
real-world driving cycle called CUEDC-P (composite urban emission drive cycle for petrol vehicles) 

developed from Australian driving pattern data collected in the field.  This drive cycle consists of four 

phases representing Residential, Arterial, Freeway and Congested driving conditions.   
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This paper describes the instantaneous form of the fuel consumption and CO2 models, presents the model 

recalibration results for a number of vehicles, and compares the default vehicle parameters for the 

composite "Light Vehicle" in SIDRA INTERSECTION before and after recalibration.   

Implications of the change in fuel and emission model parameters on intersection assessment are 
considered.  A roundabout evaluation case is presented assessing the effectiveness of roundabout 

metering signals using fuel consumption and emissions (CO2, HC, CO, NOx) as well as operating costs 

(including vehicle operating cost and value of time) with (i) older vehicle parameter values and (ii) the 
recalibrated parameter values, to investigate whether changes in vehicle parameters change the results 

significantly.  The model provided in the SIDRA INTERSECTION software package is used for this 

purpose.   

MODEL PARAMETERS 

The fuel consumption and emission models use two groups of parameters, namely vehicle parameters, 

and traffic and road parameters. 

Vehicle parameters include loaded mass, idle fuel or emission rates, and fuel or emission efficiency rates.  

The vehicle parameters used in the fuel consumption and emission models are derived considering fleet 

composition (percentage of vehicle kilometres for each vehicle type) with more detailed vehicle data 
including fuel type (% diesel), maximum engine power, power to weight ratio, number of wheels and tyre 

diameter, rolling resistance factor, frontal area and the aerodynamic drag coefficient.   

In SIDRA INTERSECTION, fuel consumption, emissions and cost are calculated for different movement 

classes including Light Vehicles, Heavy Vehicles, Buses, Bicycles, Large Trucks, Light Rail / Trams and 
two user-defined classes.  Traditionally, a more aggregate "heavy vehicle" designation is used for traffic 

modeling as well as fuel and emission modeling, where a heavy vehicle is defined as any vehicle with 

more than two axles or with dual tyres on the rear axle.  The US Highway Capacity Manual (33) defines a 
heavy vehicle as "a vehicle with more than four wheels touching the pavement during normal operation".  

Thus, buses, trucks, semi-trailers (articulated vehicles), cars towing trailers or caravans, tractors and other 

slow-moving vehicles are classified as heavy vehicles.  All other vehicles are defined as light vehicles 

(cars, vans, small trucks).   

Traffic and road parameters used directly in the SIDRA INTERSECTION model for fuel and emission 

estimation include speed, acceleration rate and grade parameters.  A detailed description of the 

polynomial acceleration model used for this purpose is available (16, 20).  

SIDRA INTERSECTION uses a macroscopic four-mode elemental (modal) model.  For each lane of 

traffic, the traffic model derives vehicle paths (drive cycles) consisting of a series of cruise, acceleration, 

deceleration and idling (stopped) time elements (Figure 1) for specific traffic conditions represented by 
intersection geometry, traffic control and demand flows based on data supplied by the user.  Thus, the 

vehicle paths (drive cycles) generated by SIDRA INTERSECTION are very different for different 

intersection types (signalized, roundabout, sign-controlled), for different signal phasing arrangements, for 

different signal timings for a given phasing arrangement, for give-way (yield) and stop control (two-way 
or all-way), and for different congestion levels.   

Vehicle paths (drive cycles) are derived and the fuel consumption and emission models are applied to 

queued (stopped) and unqueued (unstopped) vehicles belonging to different movement classes in each 
lane separately, and then the total values are calculated for all traffic using the lane.   

Vehicle paths for unqueued vehicles are constructed taking into account (i) cruise on entry to the 

approach, (ii) slow-down to a safe negotiation speed or full stop on the approach, and (iii) negotiation of 
the intersection departure area at the safe negotiation speed.   
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Figure 1 - Vehicle path (drive cycle) during a stop - start manoeuvre (example)  

 

Vehicle paths for queued vehicles (Figures 1 and 2) are constructed taking into account (i) cruise on entry 

to the approach, (ii) major stop (stop or slow down from approach cruise speed), (iii) queue move-ups 
(repeated stops and starts in the queue) and (iv) negotiation of the intersection departure area at the safe 

negotiation speed.  .   

Once the vehicle travel paths are determined, the fuel consumption and emission values are calculated for 
each of the four driving elements (modes) for each vehicle path, the results are added together for the 

entire vehicle path, and aggregate values for lanes and origin-destination (turning) movements are 

determined according to flow proportions of queued and unqueued vehicles and movement classes.   

Thus, the key to the estimation of fuel consumption and emissions is detailed modelling of stop-starts in 
addition to delays and queues.  The stop-start model is strongly related to the modelling of back of queue 

and delay at all types of intersection.  This is depicted in Figure 2 where queue move-ups are seen to be 

related to overflow queues.  Stop - start modeling is not included in the HCM for intersections (33).  In 
SIDRA INTERSECTION, a gap-acceptance model by signal analogy is used as a basis of modeling stop-

starts for roundabouts and two-way sign control (34, 35).  

The instantaneous models of fuel consumption and CO2 are described in the following section.  Other 
emission models have the same structure as the fuel consumption model.  
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Figure 2 - Relationship between queue move-ups (multiple stops) and back of queue 

 

MODEL FOR FUEL CONSUMPTION AND CO2 

The original fuel consumption model developed in the 1980s can be expressed in terms of the energy, 
power or tractive force required by the vehicle.  The instantaneous model estimates the fuel consumption 

rate (mL/s) as a value per unit time measured at any instant during the trip and expressed as a function of 

the tractive power required by the vehicle: 

 ft  =  + 1 PT + [2 a PI]a>0  for PT > 0 (1) 

  =   for PT  0 

 PT  = min (Pmax, PC + PI + PG)  (2) 

 PC  = b1 v + b2 v
3   (3) 

 PI  = Mv a v / 1000   (4) 

 PG  = 9.81 Mv (G/100) v / 1000   (5) 

   = fi /3600   (6) 

where 

ft  =  instantaneous fuel consumption rate (mL/s),  

PT   =  total tractive power (kilowatts, kW), 

Pmax = maximum engine power (kW),  

PC  =  cruise component of total power (kW),  
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PI  =  inertia component of total power (kW),  

PG  =  grade component of total power (kW),  

G  =  road grade (per cent), negative if downhill, 

Mv  =  vehicle mass (kg) including occupants and any other load, 

v  =  instantaneous speed (m/s) = v (km/h) / 3.6 

a  =  instantaneous acceleration rate (m/s2), negative for deceleration, 

  =  constant idle fuel consumption rate (mL/s), which applies during all modes of driving (as an 

estimate of fuel used to maintain engine operation),  

fi  =  constant idle fuel consumption rate in mL/h,  

b1  = Drag fuel consumption parameter related mainly to the rolling resistance (kN),  

b2  = Drag fuel consumption parameter related mainly to the aerodynamic drag (kN/(m/s) 2),  

1 = the efficiency parameter which relates fuel consumed to the total power provided by the engine, 
it can be shown to be fuel consumption per unit of energy (mL/kJ or g/kJ), and 

2 = the efficiency parameter which relates fuel consumed during positive acceleration to the product 

of acceleration rate and inertia power when n = 1.0 (mL/(kJ.m/s2) or g/(kJ.m/s2)). 

The instantaneous cruise fuel consumption rate (a = 0, PI = 0) on a on a level road (G = 0, PG = 0) is  
given by:  

 fct  =  + 1 PC  (7a) 

 fct =  + 1 (b1 v + b2 v
3)  (7b) 

Parameters A and B specified as input for the software are calculated from:  

 A = 1000 1 b1  (8a)  

 B = 1 b2 / 0.01296  (8b)  

where the parameter units are mL/km for A and (mL/km)/(km/h)2 for B.   

Parameters A and B (b1 and b2) provide a reasonable representation of drag (cruise) power to be provided 

by the engine so that the model application for fuel consumption is based on a realistic definition of PC, PI 

and PT.  Parameters b1 and b2 also reflect some component of drag associated with the engine.   

The following simpler model has been developed as part of the recalibration effort and introduced in 

SIDRA INTERSECTION Version 6.  It was obtained as an alternative model by dropping the (a PI) term 

of Equation (1):   

 ft  =  +  PT  for PT > 0 (9)  

  =   for PT  0 

where parameters are as in Equation (1).   

The values of instantaneous Carbon Dioxide (CO2) emission rate (g/s as a value per unit time) are 

estimated directly from the instantaneous fuel consumption rate:   

 ft(CO2) =  fCO2 ft(fuel)   (10) 

where 

ft(fuel) =  fuel consumption rate in mL/s and,  

fCO2  =  CO2 to Fuel Consumption Rate in grams per millilitre (kg per litre) of fuel (g/mL or kg/L).  

The model for estimating the instantaneous Carbon Monoxide (CO), Hydrocarbons (HC) and Nitrogen 

Oxides (NOx) emission rates (mg/s), representing the emission production rate at any instant during the 
trip determined as a value per unit time, has the same structure as the instantaneous fuel consumption 

model with different parameters.   
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The method used to calibrate the fuel consumption and emission models is explained in a previous paper 

by the authors (29).   

MODEL CALIBRATION RESULTS 

The calibration confirmed that new vehicles are significantly more efficient with substantially lower fuel 

consumption and emission (CO2, CO, HC, NOx) rates.  This result is as expected due to technological 

improvements in the vehicle fleet since the 1980s.  

A comparison of the fuel consumption and CO2 default parameters used in SIDRA INTERSECTION for 

light vehicles before and after recalibration is presented in Table 1.   

Calibration results for individual vehicles of different types are given in Figure 3 (vehicle characteristics 

listed include fuel density, D).     

Measured and estimated values of fuel consumption and emission rates for some of the individual test 

vehicles for the CUEDC-P drive cycle are summarized in Table 2.   

 

 

 

 

Table 1 - Comparison of default parameters for Light Vehicle fuel consumption and CO2 models 

before and after recalibration 

Parameter Description Units Old Defaults New Defaults Difference 

fi Idle fuel consumption rate mL/h 1350 1200 -11% 

A A = 1000 1 b1 mL/km 21.0 16.0 -24% 

B B = 1 b1 / 0.01296 
(mL/km)/ 
(km/h)2 

0.00550 0.00400 -27% 

b1 
Drag fuel consumption 
parameter, mainly related to 
rolling resistance 

kN 0.233333 0.160000 -31% 

b2 
Drag fuel consumption 
parameter mainly related to 
aerodynamic drag 

kN/(m/s)2 0.000792 0.000518 -35% 

1 Efficiency parameter mL/kJ 0.090 0.100 * 

2 
Energy-acceleration efficiency 
parameter 

mL/(kJ.m/s2) 0.030 - - 

Mv Average vehicle mass kg 1400 1600 14% 

Pmax Maximum power kW 85 120 41% 

PWR Power to Weight Ratio kW / t 60.7 75.0 24% 

fCO2 CO2 emission rate g/mL 2.500 2.350 -6% 

* The higher value of the efficiency parameter, 1 compensates for elimination of the second parameter, 2.   
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Figure 3 – Fuel consumption model calibration results for individual vehicles 

  



Akçelik, Smit and Besley  8 

 

Table 2 - Measured and estimated values of fuel consumption and emission rates for individual test 

vehicles for the CUEDC-P drive cycle 

 

Fuel Consumption CO2 CO HC NOX 

 

L/100km mpg (US) g/km g/km g/km g/km 

Small Car: Toyota Corolla Ascent 2004 

Measured 6.0 39.2 140.1 0.229 0.010 0.068 

Estimated 5.9 40.1 137.9 0.234 0.010 0.059 

Large Car: Holden Commodore 2006 

Measured 9.4 24.9 220.7 0.095 0.019 0.015 

Estimated 9.3 25.4 217.8 0.093 0.016 0.012 

Truck: Isuzu FVR900 (T) 2005 (Diesel) 

Measured 32.0 7.3 841.8 0.951 0.083 7.577 

Estimated 32.0 7.3 843.7 0.869 0.079 5.880 

 

 

Figure 4 – Estimated fuel consumption vs measured fuel consumption for Toyota Corolla  

(vehicle details given in Figure 3) for the CUEDC-P drive cycle  

(second-by-second fuel consumption values compared) 

 

Fuel consumption rates estimated using the calibrated test vehicle parameters indicated very high 

accuracy levels in terms of both instantaneous values.  This can be seen from Figures 4 and 5 which 

shows comparison of estimated and measured fuel consumption rates for the Toyota Corolla for a section 
of the drive cycle.   

The errors in fuel consumption (and CO2 emission) estimation for the total drive cycle for all vehicles 

were in the range -3.4 to 0 per cent.  The Accuracy levels were high for all segments of the drive cycle 
(Residential, Arterial, Freeway and Congested).  The full CUEDC-P drive cycle is also shown in 

Figure 5.  On the other hand, the error levels in emission (HC, CO, NOx) estimation were significantly 

higher (-23.1 to +2.5 per cent for all vehicles).   
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Figure 5 – Accuracy of the instantaneous fuel consumption model for Toyota Corolla (vehicle details 

given in Figure 3) with the full CUEDC-P drive cycle also shown 

 

 

COMPARISON OF ALTERNATIVE INTERSECTION TREATMENTS 

A case study is used as an example to investigate the implications of the change in model parameters on 

assessing the effectiveness of roundabout metering signals in terms of fuel consumption and emissions 
(CO2, HC, CO, NOx) as well as operating costs (including vehicle operating cost and value of time).  This 

is the case of the Nepean Highway - McDonald Street roundabout in Melbourne, Australia.  Studies of 

roundabout metering signals that operate at this intersection were published previously (27, 36).  There is 

extensive literature on roundabout metering signals (36-45).  A recent study of emission estimation at 
multi-lane roundabouts should also be mentioned (46).   

This investigation will compare the performance of roundabout metering signals with unsignalised 

roundabout conditions. Fuel consumption, emission and operating cost results will be obtained using 
SIDRA INTERSECTION Version 6 with:  

(i) older default values for light and heavy vehicles and  

(ii) new default values based on the recalibration effort.   

The specific purpose of the paper is to investigate whether changes in vehicle parameters change the 

assessment results significantly.  
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The example is shown in Figure 6.  The intersection has been mirror-imaged for driving on the right hand 
side of the road (to make the example easier to understand for North American readers).  The Standard 

Right-Hand version of the software has been used with the SIDRA Standard roundabout capacity model 

(Environment Factor = 1.0) in order to emulate the traffic conditions relevant to this case study.  Metric 
units apply.  The original AM peak volumes have been increased by 10 per cent.  Gap Acceptance Factor 

and Opposing Vehicle Factor values for Heavy Vehicles are specified as 2.0. Pedestrian movements are 

not included in the analysis.  

Under AM peak conditions, the Nepean Highway SW approach is oversaturated for the unsignalised 

roundabout (without metering signals) due to unbalanced flow conditions.  Metering signals where 
Nepean Highway SW is the controlling approach and McDonald Street NW is the metered approach 

balance the operating conditions on these two approaches introducing significant improvements to the 

performance of the intersection.   

The total fuel consumption, emission and operating cost values as well as various intersection 
performance indicators (largest degree of saturation, largest 95th percentile back of queue, average 

intersection delay and the corresponding level of service) are given for the two conditions analyzed.  Two 
sets of total fuel consumption, emission (CO2, HC, CO, NOx) and operating cost values are given 

corresponding to the use of old and new default values of vehicle parameters for the same intersection 

performance.  

The results of the assessment of the effectiveness of roundabout metering signals using old and new 

default values of vehicle parameters are summarized in Table 3.  It is seen that the changes in the default 

parameters made little difference to the relative levels of benefits obtained from the use of metering 

signals assessed in terms of fuel consumption, emissions and operating cost results.  The differences in 
fuel consumption and CO2 emissions using the old and new default values were very small whereas the 

differences in HC, CO and NOx emissions were very large.  While large differences in emission results 

are as expected due to the effect of emission control technologies, it was surprising to see very small 
differences in fuel consumption and CO2 emissions (larger differences in CO2 emissions are due to the 

effect of the change in the CO2 to Fuel Consumption Rate).  The main reason for these small differences 

is the increases in the light vehicle and heavy vehicle mass values.  In particular, the composite light 
vehicle was affected by significant increases in the SUV and light rigid truck percentages in vehicle fleet 

composition used in determining the mass values for the new defaults.   
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Figure 6 - Roundabout metering signals case study: Nepean Highway - McDonald Street, Melbourne, 
Australia 

Controlling approach:  
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Table 3 - Assessment of the effectiveness of roundabout metering signals using old and new default 

values of vehicle parameters used in the fuel consumption and emission models 

Same for OLD and NEW defaults 
Unsignalized 
Roundabout 

Metering 
Signals 

Metering 
Benefit 

Degree of Saturation 
 

1.152 0.93 -19.3% 

Control Delay (Average) sec 94.7 29.4 -69.0% 

Intersection Level of Service (LOS) 
 

LOS F LOS C LOS F to C 

95% Back of Queue - Vehicles 
(Worst Lane) 

veh 113.6 35.5 -68.8% 

NEW Defaults 
Unsignalized 
Roundabout 

Metering 
Signals 

Metering 
Benefit 

Cost $/y 2,244,932 1,255,306 -44.1% 

Fuel Consumption L/y 232,610 179,855 -22.7% 

Carbon Dioxide kg/y 549,402 425,125 -22.6% 

Hydrocarbons kg/y 54 38 -29.6% 

Carbon Monoxide kg/y 543 460 -15.3% 

NOx kg/y 650 531 -18.3% 

OLD Defaults 
Unsignalized 
Roundabout 

Metering 
Signals 

Metering 
Benefit 

Cost $/y 2,245,150 1,257,159 -44.0% 

Fuel Consumption L/y 239,315 187,195 -21.8% 

Carbon Dioxide kg/y 599,091 468,687 -21.8% 

Hydrocarbons kg/y 750 507 -32.4% 

Carbon Monoxide kg/y 15,952 12,099 -24.2% 

NOx kg/y 1,153 972 -15.7% 

Differences between NEW and OLD defaults 
Unsignalized 
Roundabout 

Metering 
Signals 

 

Cost $/y 0.0% -0.1% 
 

Fuel Consumption L/y -2.8% -3.9% 
 

Carbon Dioxide * kg/y -8.3% -9.3% 
 

Hydrocarbons kg/y -92.8% -92.5% 
 

Carbon Monoxide kg/y -96.6% -96.2% 
 

NOx kg/y -43.6% -45.4% 
 

* The reduction in the CO2 rate is affected by the new lower default value used.   
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CONCLUDING REMARKS 

This paper described the instantaneous form of the fuel consumption and emission models, presented the 

model recalibration results for a number of vehicles, and compared the default vehicle parameters for the 
composite "Light Vehicle" in SIDRA INTERSECTION before and after recalibration.   

A roundabout evaluation case is presented as an example to assess the implications of the change in fuel 

and emission model parameters.  The example evaluates the effectiveness of roundabout metering signals 
using the fuel consumption and emission models with (i) older vehicle parameter values and (ii) the 

recalibrated parameter values to investigate whether changes in vehicle parameters change the results 

significantly.   

The results of this investigation indicated that the changes in the default parameters made little difference 
to the relative levels of benefits obtained from the use of metering signals assessed in terms of fuel 

consumption, emissions and operating cost results.  While the differences in fuel consumption and CO2 

emissions using the old and new default values were very small, the differences in HC, CO and NOx 
emissions were very large.   

Large differences in emission results are as expected due to the effect of emission control technologies. 

However, it was surprising to see very small differences in fuel consumption and CO2 emissions in view 
of the decreases in vehicle parameters shown in Table 1.  The main reason for this finding is the increases 

in the light vehicle and heavy vehicle mass values.  In particular, the new light vehicle mass value was 

affected by significant increases in the SUV and light rigid truck percentages in vehicle fleet composition.  

This means that while the energy and CO2 emission efficiencies of modern vehicles are improved, the 
total fuel consumption and CO2 emissions of the vehicle fleet are not necessarily decreased due to the 

higher percentage of larger vehicles.  Further analyses are recommended using the same (new) vehicle 

mass values to isolate the effect of other vehicle parameters.  
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